
Areca's file-system access layer

The java.io.File class is simply used as a pointer by Areca. That means that the read/write methods (such as 
delete, mkdir, isFile, …) are NEVER invoked directly.
Instead, Areca accesses the file system by calling specific classes that implement the « FileSystemDriver » 
interface. These drivers can be registered in the FileSystemManager by invoking the « registerDriver(File, 
FileSystemDriver » method.

Each access to the file system follows the following procedure :

FileSystemManager

delete(File f)
mkdir(File f)

getFileInputStream(File f)
etc…

FileSystemDriver

getDriver(File f)

delete(File f)
mkdir(File f)

getFileInputStream(File f)
etc…



FileSystemDriver class hierarchy

Each FileSystemDriver implements a specific file-access behaviour.

The main implementations are :
 The DefaultFileSystemDriver, which routes methods invocations to the corresponding methods of 

the « java.io.File » class (for instance delete, mkdir, …)
 The FTPFileSystemDriver, which routes all filesystem calls to a FTP server
 The AbstractLinkableFilesystemDriver, which wrapps another FilesystemDriver (the « predecessor » 

- for instance a DefaultFileSystemDriver) and implements a decorator pattern : it triggers specific 
behaviour (for instance encryption) before calling its predecessor.

FileSystemManager
+ registerDriver(File mp,FileSystemDriver d)
+ getDriver(File mp)

…

FileSystemDriver
+ getFileInputStream(File f)
+ delete(File f)
+ rmdir(File f)

…

AbstractLinkableSystemDriver
…

predecessor
1

DefaultFileSystemDriver
…

EncryptedFileSystemDriver
…

FTPFileSystemDriver
…

HashFileSystemDriver
…

*



Target storage configuration

Each Target references a Medium which is used for file storage operations (the main implementation is the 
AbstractIncrementalArchiveMedium). Once the target is instanciated, and its medium properly configured, 
the « install » method is called by Areca. This method calls the initFileSystemDriver of the FileSystemPolicy 
and the EncryptionPolicy classes.

These methods instanciate and configure a specific FileSystemDriver, which is registered in the 
FileSystemManager. Further calls to this FileSystemManager will use the appropriate driver and activate 
encryption / ftp accesses / … behaviours.

AbstractFileSystemMedium

setFileSystemPolicy()

setEncryptionPolicy()

install()

FileSystemPolicy

initFileSystemDriver()

EncryptionPolicy

initFileSystemDriver()

FileSystemManager

registerDriver()



The Plugin API

Areca provides a plugin API which allows developers to implement their own storage policy. Storage policies 
must be implemented as subclasses of the FileSystemPolicy interface. Once this policy is instanciated, a 
corresponding FilesystemDriver can be created, configured and registered as described above.

Areca may instanciate a new FileSystemPolicy in two cases :
 On startup, when the target's XML configuration is read : A target is created, and its corresponding 

Medium is instanciated with its own storage policy.
 When the target configuration window is displayed (when the user creates or modifies an existing 

target)

That's why each new FileSystemPolicy must provide its own :
 XML adapter (implemented as a subclass of FileSystemPolicyXMLHandler), which is used to 

read/write the target's XML configuration
 User interface helper (implemented as a subclass of StorageSelectionHelper), which is used to 

display the appropriate configuration window to the user)

Both of these classes are wrapped by a StoragePlugin :

StoragePlugin
public FileSystemPolicyXMLHandler getFileSystemPolicyXMLHandler();
public boolean storageSelectionHelperProvided();
public StorageSelectionHelper getStorageSelectionHelper();

FileSystemPolicyXMLHandler
public FileSystemPolicy read(Node mediumNode);
public void write(FileSystemPolicy policy, StringBuffer sb);

StorageSelectionHelper
public void handleSelection();
public FileSystemPolicy handleConfiguration();



Storage plugin packaging

Each plugin must be installed in the /plugins subdirectory of Areca. Let's consider a new storage plugin 
called « dummy ».

A new subdirectory called « plugins /dummy » must be created, which must contain a « dummy.properties » 
file. This file is a deployment descriptor and contains two important informations :

 plugin.jar.file : specifies the jar file that contains the plugin implementation.
 plugin.class : specifies the plugin main class.

For instance :

As defined in this deployment descriptor example, the /plugins/dummy directory must also contain a 
« my_dummy_implementation.jar » file that contains all java classes required by the plugin. This jar file must 
contain a class named « com.application.areca.dummyplugin.DummyStoragePlugin » which defines the 
plugin implementation.

Examples
Areca contains an internal plugin which is used for the FTP / FTPs storage. it can be used as an example if 
you want to implement your own storage plugin.
Have a look at the com.application.areca.plugins.FTPStoragePlugin class.

You can also have a look at :
 com.application.areca.plugins.StoragePluginRegistry
 com.application.areca.plugins.StoragePlugin
 com.application.areca.launcher.gui.FTPStorageSelectionHelper
 com.application.areca.adapters.FTPFileSystemPolicyXMLHandler
 com.application.areca.launcher.gui.FTPEditionWindow
 com.application.areca.launcher.gui.TargetEditionWindow (particularly the « initGeneralTab » 

method)

plugin.jar.file=my_dummy_implementation.jar
plugin.class=com.application.areca.dummyplugin.DummyStoragePlugin


