
Areca's file-system access layer

The java.io.File class is simply used as a pointer by Areca. That means that the read/write methods (such as 
delete, mkdir, isFile, …) are NEVER invoked directly.
Instead, Areca accesses the file system by calling specific classes that implement the « FileSystemDriver » 
interface. These drivers can be registered in the FileSystemManager by invoking the « registerDriver(File, 
FileSystemDriver » method.

Each access to the file system follows the following procedure :

FileSystemManager

delete(File f)
mkdir(File f)

getFileInputStream(File f)
etc…

FileSystemDriver

getDriver(File f)

delete(File f)
mkdir(File f)

getFileInputStream(File f)
etc…



FileSystemDriver class hierarchy

Each FileSystemDriver implements a specific file-access behaviour.

The main implementations are :
 The DefaultFileSystemDriver, which routes methods invocations to the corresponding methods of 

the « java.io.File » class (for instance delete, mkdir, …)
 The FTPFileSystemDriver, which routes all filesystem calls to a FTP server
 The AbstractLinkableFilesystemDriver, which wrapps another FilesystemDriver (the « predecessor » 

- for instance a DefaultFileSystemDriver) and implements a decorator pattern : it triggers specific 
behaviour (for instance encryption) before calling its predecessor.

FileSystemManager
+ registerDriver(File mp,FileSystemDriver d)
+ getDriver(File mp)

…

FileSystemDriver
+ getFileInputStream(File f)
+ delete(File f)
+ rmdir(File f)

…

AbstractLinkableSystemDriver
…

predecessor
1

DefaultFileSystemDriver
…

EncryptedFileSystemDriver
…

FTPFileSystemDriver
…

HashFileSystemDriver
…

*



Target storage configuration

Each Target references a Medium which is used for file storage operations (the main implementation is the 
AbstractIncrementalArchiveMedium). Once the target is instanciated, and its medium properly configured, 
the « install » method is called by Areca. This method calls the initFileSystemDriver of the FileSystemPolicy 
and the EncryptionPolicy classes.

These methods instanciate and configure a specific FileSystemDriver, which is registered in the 
FileSystemManager. Further calls to this FileSystemManager will use the appropriate driver and activate 
encryption / ftp accesses / … behaviours.

AbstractFileSystemMedium

setFileSystemPolicy()

setEncryptionPolicy()

install()

FileSystemPolicy

initFileSystemDriver()

EncryptionPolicy

initFileSystemDriver()

FileSystemManager

registerDriver()



The Plugin API

Areca provides a plugin API which allows developers to implement their own storage policy. Storage policies 
must be implemented as subclasses of the FileSystemPolicy interface. Once this policy is instanciated, a 
corresponding FilesystemDriver can be created, configured and registered as described above.

Areca may instanciate a new FileSystemPolicy in two cases :
 On startup, when the target's XML configuration is read : A target is created, and its corresponding 

Medium is instanciated with its own storage policy.
 When the target configuration window is displayed (when the user creates or modifies an existing 

target)

That's why each new FileSystemPolicy must provide its own :
 XML adapter (implemented as a subclass of FileSystemPolicyXMLHandler), which is used to 

read/write the target's XML configuration
 User interface helper (implemented as a subclass of StorageSelectionHelper), which is used to 

display the appropriate configuration window to the user)

Both of these classes are wrapped by a StoragePlugin :

StoragePlugin
public FileSystemPolicyXMLHandler getFileSystemPolicyXMLHandler();
public boolean storageSelectionHelperProvided();
public StorageSelectionHelper getStorageSelectionHelper();

FileSystemPolicyXMLHandler
public FileSystemPolicy read(Node mediumNode);
public void write(FileSystemPolicy policy, StringBuffer sb);

StorageSelectionHelper
public void handleSelection();
public FileSystemPolicy handleConfiguration();



Storage plugin packaging

Each plugin must be installed in the /plugins subdirectory of Areca. Let's consider a new storage plugin 
called « dummy ».

A new subdirectory called « plugins /dummy » must be created, which must contain a « dummy.properties » 
file. This file is a deployment descriptor and contains two important informations :

 plugin.jar.file : specifies the jar file that contains the plugin implementation.
 plugin.class : specifies the plugin main class.

For instance :

As defined in this deployment descriptor example, the /plugins/dummy directory must also contain a 
« my_dummy_implementation.jar » file that contains all java classes required by the plugin. This jar file must 
contain a class named « com.application.areca.dummyplugin.DummyStoragePlugin » which defines the 
plugin implementation.

Examples
Areca contains an internal plugin which is used for the FTP / FTPs storage. it can be used as an example if 
you want to implement your own storage plugin.
Have a look at the com.application.areca.plugins.FTPStoragePlugin class.

You can also have a look at :
 com.application.areca.plugins.StoragePluginRegistry
 com.application.areca.plugins.StoragePlugin
 com.application.areca.launcher.gui.FTPStorageSelectionHelper
 com.application.areca.adapters.FTPFileSystemPolicyXMLHandler
 com.application.areca.launcher.gui.FTPEditionWindow
 com.application.areca.launcher.gui.TargetEditionWindow (particularly the « initGeneralTab » 

method)

plugin.jar.file=my_dummy_implementation.jar
plugin.class=com.application.areca.dummyplugin.DummyStoragePlugin


